Tibati Excerpted from – FIELD OF THE INVENTION:

The present invention relates to crystalline forms of 3′-tert-Butyl-3′-N-tert-butyloxycarbonyl-4-deacetyl-3′-dephenyl-3′-N-debenzoyl-4-O-methoxycarbonyl-paclitaxel; processes for the production thereof; pharmaceutical compositions thereof; methods for preparing the pharmaceutical composition; and methods for inhibiting tumor growth therewith.


Paclitaxel is a natural product extracted from the bark of Pacific yew trees, Taxus brevifolia, and is the active constituent of the anticancer agent TAXOL®.


It has been shown to have excellent antitumor activity in in vivo animal models, and recent studies have elucidated its unique mode of action, which involves abnormal polymerization of tubulin and disruption of mitosis. It is used clinically against a number of human cancers. It is an important cancer agent both therapeutically and commercially. Numerous clinical trials are in progress to expand and increase the utility of this agent for the treatment of human proliferative diseases. The results of TAXOL® clinical studies have been reviewed by numerous authors. A very recent compilation of articles by a number of different authors is contained in the entire issue of Seminars in Oncology 1999, 26 1, Suppl 2. Other examples include articles by Rowinsky et al. in TAXOL®: A Novel Investigational Antimicrotubule Agent, J. Natl. Cancer Inst., 82: pp 1247-1259, 1990; by Rowinsky and Donehower in “The Clinical Pharmacology and Use of Antimicrotubule Agents in Cancer Chemotherapeutics,” Pharmac. Ther., 52:35-84, 1991; by Spencer and Faulds in “Paclitaxel, A Review of its Pharmacodynamic and Pharmacokinetic Properties and Therapeutic Potential in the Treatment of Cancer,” Drugs, 48 5 794-847, 1994; by K. C. Nicolaou et al. in “Chemistry and Biology of TAXOL®,” Angew. Chem., Int. Ed. Engl., 33: 15-44, 1994; by F. A. Holmes, A. P. Kudelka, J. J. Kavanaugh, M. H. Huber, J. A. Ajani, V. Valero in the book “Taxane Anticancer Agents Basic Science and Current Status” edited by Gunda I. Georg, Thomas T. Chen, Iwao Ojima, and Dolotrai M. Vyas, 1995, American Chemical Society, Washington, D.C., 31-57; by Susan G. Arbuck and Barbara Blaylock in the book “TAXOL® Science and Applications” edited by Mathew Suffness, 1995, CRC Press Inc., Boca Raton, Fla., 379-416; and also in the references cited therein.

A semi-synthetic analog of paclitaxel named docetaxel has also been found to have antitumor activity and is the active ingredient of the commercially available cancer agent TAXOTERE®. See, Biologically Active Taxol Analogues with Deleted A-Ring Side Chain Substitutents and Variable C-2′ Configurations, J. Med. Chem., 34, pp 1176-1184 1991; Relationships between the Structure of Taxol Analogues and Their Antimitotic Activity, J. Med. Chem., 34, pp 992-998 1991. A review of the clinical activity of TAXOTERE® by Jorge E. Cortes and Richard Pazdur has appeared in Journal of Clinical Oncology 1995, 1310, 2643 to 2655. The structures of paclitaxel and docetaxel are shown below along with the conventional numbering system for molecules belonging to the class; such numbering system is also employed in this application.

via SureChem – Document – USPTO Applications – Publication No. 20060116420 – “Crystalline forms of 3′-tert-Butyl-3′-N-tert-butyloxycarbonyl-4-deacetyl-3′-dephenyl-3′-N-debenzoyl-4-O-methoxycarbonyl-paclitaxel” – Description.

(Visited 184 times, 1 visits today)